Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Respiration ; 103(1): 32-40, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38056434

RESUMO

INTRODUCTION: Cryobiopsy (CB) using a 1.1-mm cryoprobe under fluoroscopic guidance is feasible and safe for diagnosis of ground glass opacity (GGO) lesions. However, the efficacy of CB combined with cone-beam CT (CBCT) for GGO-predominant pulmonary nodules remains elusive. METHODS: We retrospectively studied patients who underwent CB combined with conventional biopsy under CBCT guidance for GGO-predominant pulmonary nodules with a consolidation-to-tumour ratio <50.0%. RESULTS: A total of 32 patients with GGO-predominant pulmonary nodules were enrolled: 17 pure GGOs and 15 mixed GGOs. The mean lesion diameter was 15.81 ± 5.52 mm and the overall diagnostic yield was 71.9%. Seven lesions were diagnosed by CB alone, which increased the diagnostic outcomes by 21.9%. Diagnostic yields for CB, forceps biopsy (FB), brushing, and guide sheath flushing were 65.6%, 46.9%, 15.6%, and 14.3%, respectively. Univariate analysis revealed that positive computed tomography (CT) bronchus sign (p = 0.035), positive CBCT sign (p < 0.01), and CB-first biopsy sequence (p = 0.036) were significant predictive factors for higher diagnostic yield. Specimens obtained by CB had larger mean sample size (p < 0.01), lower blood cell area (p < 0.01), and fewer crush artefacts (p < 0.01) than specimens from FB. No severe bleeding or other complications occurred. CONCLUSION: CB using a 1.1-mm cryoprobe under CBCT guidance increased diagnostic yield for GGO-predominant pulmonary nodules based on conventional biopsy. Further, it provided larger and nearly intact samples compared with forceps.


Assuntos
Neoplasias Pulmonares , Nódulos Pulmonares Múltiplos , Humanos , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/patologia , Estudos Retrospectivos , Biópsia/métodos , Tomografia Computadorizada de Feixe Cônico , Nódulos Pulmonares Múltiplos/diagnóstico por imagem
2.
Animal Model Exp Med ; 6(4): 306-316, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37271879

RESUMO

BACKGROUND: The purpose of our study was to study the composition and content of the feline plasma metabolome revealing the critical metabolites and metabolic pathways associated with age during growth and development. METHODS: Blood samples were collected from juvenile and adult groups for blood routine tests and serum biochemistry tests. Non-targeted metabolomics analyses of plasma were also performed to investigate changes in metabolites and metabolic pathways. RESULTS: In this study, we found that the red blood cell counts, liver function indexes (albumin and gamma-glutamyl transpeptidase), and the concentration of triglyceride and glucose changed significant with growth and development. The metabolomics results revealed that 1427 metabolites were identified in the plasma of young and adult cats. Most of these metabolites belong to major classes of lipids and lipid-like molecules. The most obvious age-related metabolites include reduced levels of chenodeoxycholate, taurocholate, cholate, and taurochenodeoxycholate but increased levels of L-cysteine and taurocyamine in the adult cat's serum. These metabolites are mainly involved in the primary bile acid biosynthesis pathway, the bile secretion pathway, and the taurine and hypotaurine metabolism pathway. CONCLUSION: This study revealed many age-related metabolite alterations in the feline plasma. These age-varying metabolites, especially in the bile acid biosynthesis and secretion metabolism pathways, indicate that the regulation of these pathways is involved in the growth and development of cats. This study promotes our understanding of the mechanism of feline growth and provides new insights into nutrition and medicine for cats of different ages.


Assuntos
Metaboloma , Metabolômica , Gatos , Animais , Plasma , Ácidos e Sais Biliares , Crescimento e Desenvolvimento
3.
Exp Gerontol ; 178: 112202, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37178875

RESUMO

Skin aging is a complex process involving intricate genetic and environmental factors. In this study, we performed a comprehensive analysis of the transcriptional regulatory landscape of skin aging in canines. Weighted Gene Co-expression Network Analysis (WGCNA) was employed to identify aging-related gene modules. We subsequently validated the expression changes of these module genes in single-cell RNA sequencing (scRNA-seq) data of human aging skin. Notably, basal cell (BC), spinous cell (SC), mitotic cell (MC), and fibroblast (FB) were identified as the cell types with the most significant gene expression changes during aging. By integrating GENIE3 and RcisTarget, we constructed gene regulation networks (GRNs) for aging-related modules and identified core transcription factors (TFs) by intersecting significantly enriched TFs within the GRNs with hub TFs from WGCNA analysis, revealing key regulators of skin aging. Furthermore, we demonstrated the conserved role of CTCF and RAD21 in skin aging using an H2O2-stimulated cell aging model in HaCaT cells. Our findings provide new insights into the transcriptional regulatory landscape of skin aging and unveil potential targets for future intervention strategies against age-related skin disorders in both canines and humans.


Assuntos
Envelhecimento da Pele , Fatores de Transcrição , Humanos , Animais , Cães , Fatores de Transcrição/genética , Envelhecimento da Pele/genética , Peróxido de Hidrogênio , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Perfilação da Expressão Gênica
4.
Obesity (Silver Spring) ; 31(6): 1584-1599, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37203337

RESUMO

OBJECTIVE: Adipogenesis has been recognized as an attractive avenue for maintaining systemic homeostasis, with peroxisome proliferator-activated receptor γ (PPARγ) showing predominant roles in this process. This study aims to identify promising drug candidates by targeting PPARγ for adipogenesis-based metabolic homeostasis and to clarify the detailed mechanisms. METHODS: Molecular events contributing to adipogenesis were screened, which identified PPARγ as having the predominant role. Promising agents of adipogenesis agonism were screened using a PPARγ-based luciferase reporter assay. The functional capacity and molecular mechanisms of magnolol were intensively examined using 3T3-L1 preadipocytes and dietary models. RESULTS: This study found that F-box only protein 9 (FBXO9)-mediated lysine 11 (K11)-linked ubiquitination and proteasomal degradation of PPARγ are critically required during adipogenesis and systemic homeostasis. Notably, magnolol was identified as a potent adipogenesis activator by stabilizing PPARγ. The pharmacological mechanisms investigations clarified that magnolol directly binds to PPARγ and markedly interrupts its interaction with FBXO9, leading to a decline in K11-linked ubiquitination and proteasomal degradation of PPARγ. Clinically important, magnolol treatment significantly facilitates adipogenesis in vitro and in vivo. CONCLUSIONS: The downregulation of K11-linked ubiquitination of PPARγ caused by FBOX9 is essentially required for adipogenesis, while targeting PPARγ-FBXO9 interaction provides a new avenue for the therapy of adipogenesis-related metabolic disorder.


Assuntos
Adipogenia , Proteínas F-Box , Camundongos , Animais , PPAR gama/genética , PPAR gama/metabolismo , Compostos de Bifenilo/farmacologia , Homeostase , Células 3T3-L1
5.
Nat Commun ; 14(1): 1397, 2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-36914678

RESUMO

Metastability-engineering, e.g., transformation-induced plasticity (TRIP), can enhance the ductility of alloys, however it often comes at the expense of relatively low yield strength. Here, using a metastable Ti-1Al-8.5Mo-2.8Cr-2.7Zr (wt.%) alloy as a model material, we fabricate a heterogeneous laminated structure decorated by multiple-morphological α-nanoprecipitates. The hard α nanoprecipitate in our alloy acts not only as a strengthener to the material, but also as a local stress raiser to activate TRIP in the soft matrix for great uniform elongation and as a promoter to trigger interfacial delamination toughening for superior fracture resistance. By elaborately manipulating the activation sequence of lamellar-thickness-dependent deformation mechanisms in Ti-1Al-8.5Mo-2.8Cr-2.7Zr alloys, the yield strength of the present submicron-laminated alloy is twice that of equiaxed-coarse grained alloys with the same composition, yet without sacrificing the large uniform elongation. The desired mechanical properties enabled by this strategy combining the laminated metastable structure and trifunctional nanoprecipitates provide new insights into designing ultra-strong and ductile materials with great toughness.

6.
Front Cardiovasc Med ; 10: 1130635, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36998980

RESUMO

Background: Pathological cardiac hypertrophy is commonly resulted from sustained pressure overload and/or metabolic disorder and eventually leads to heart failure, lacking specific drugs in clinic. Here, we aimed to identify promising anti-hypertrophic drug(s) for heart failure and related metabolic disorders by using a luciferase reporter-based high-throughput screening. Methods: A screen of the FDA-approved compounds based on luciferase reporter was performed, with identified luteolin as a promising anti-hypertrophic drug. We systematically examined the therapeutic efficacy of luteolin on cardiac hypertrophy and heart failure in vitro and in vivo models. Transcriptome examination was performed to probe the molecular mechanisms of luteolin. Results: Among 2,570 compounds in the library, luteolin emerged as the most robust candidate against cardiomyocyte hypertrophy. Luteolin dose-dependently blocked phenylephrine-induced cardiomyocyte hypertrophy and showed extensive cardioprotective roles in cardiomyocytes as evidenced by transcriptomics. More importantly, gastric administration of luteolin effectively ameliorated pathological cardiac hypertrophy, fibrosis, metabolic disorder, and heart failure in mice. Cross analysis of large-scale transcriptomics and drug-target interacting investigations indicated that peroxisome proliferator activated receptor γ (PPARγ) was the direct target of luteolin in the setting of pathological cardiac hypertrophy and metabolic disorders. Luteolin can directly interact with PPARγ to inhibit its ubiquitination and subsequent proteasomal degradation. Furthermore, PPARγ inhibitor and PPARγ knockdown both prevented the protective effect of luteolin against phenylephrine-induced cardiomyocyte hypertrophy in vitro. Conclusion: Our data clearly supported that luteolin is a promising therapeutic compound for pathological cardiac hypertrophy and heart failure by directly targeting ubiquitin-proteasomal degradation of PPARγ and the related metabolic homeostasis.

7.
Chin Med ; 18(1): 30, 2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36932412

RESUMO

BACKGROUND: Non-alcoholic fatty liver (NAFLD) and its related metabolic syndrome have become major threats to human health, but there is still a need for effective and safe drugs to treat these conditions. Here we aimed to identify potential drug candidates for NAFLD and the underlying molecular mechanisms. METHODS: A drug repositioning strategy was used to screen an FDA-approved drug library with approximately 3000 compounds in an in vitro hepatocyte model of lipid accumulation, with honokiol identified as an effective anti-NAFLD candidate. We systematically examined the therapeutic effect of honokiol in NAFLD and metabolic syndrome in multiple in vitro and in vivo models. Transcriptomic examination and biotin-streptavidin binding assays were used to explore the underlying molecular mechanisms, confirmed by rescue experiments. RESULTS: Honokiol significantly inhibited metabolic syndrome and NAFLD progression as evidenced by improved hepatic steatosis, liver fibrosis, adipose inflammation, and insulin resistance. Mechanistically, the beneficial effects of honokiol were largely through AMPK activation. Rather than acting on the classical upstream regulators of AMPK, honokiol directly bound to the AMPKγ1 subunit to robustly activate AMPK signaling. Mutation of honokiol-binding sites of AMPKγ1 largely abolished the protective capacity of honokiol against NAFLD. CONCLUSION: These findings clearly demonstrate the beneficial effects of honokiol in multiple models and reveal a previously unappreciated signaling mechanism of honokiol in NAFLD and metabolic syndrome. This study also provides new insights into metabolic disease treatment by targeting AMPKγ1 subunit-mediated signaling activation.

9.
Transl Lung Cancer Res ; 10(7): 3312-3319, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34430367

RESUMO

Identification of pulmonary ground-glass opacity (GGO) lesions during bronchoscopic procedures remains challenging, as GGOs cannot be directly visualized under 2-dimensional (2D) fluoroscopy and are often difficult to detect by radial endobronchial ultrasound. Recently, a mobile 2D/3D C-arm fluoroscopy system was developed that provides both 2D fluoroscopy and mobile 3D imaging to assess and confirm the location of the lesions and ancillary bronchoscopic tools. However, previous studies focused mainly on experience of utilizing mobile 3D C-arm system for transbronchial biopsy of solid pulmonary nodules. Here, we evaluated the feasibility of mobile 3D imaging assisted transbronchial biopsy with and without ablation of two patients with GGO nodules. The first patient underwent biopsy only, and the second patient underwent biopsy in the right upper lobe lung nodule and ablation of a left upper lobe lung nodule in one session. Procedures in both patients were successfully performed, and no significant complications have been observed intra- or post-procedurally. Our case study highlights the potential value of the mobile 3D imaging system in accurate identification of the target lung lesion, confirmation of bronchoscopic tools within the lesion, and assessment of the target lesion and surrounding tissue following bronchoscopic ablation procedure. Furthermore, a "one-stop shop" bronchoscopy workflow combining both biopsy and ablation for one or more lung lesions in one session could be made possible by utilizing a hybrid mobile 2D/3D C-arm system in the bronchoscopy suite.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...